Pulmonary Function Testing

Module L

Objectives

• State the indications for pulmonary function testing.
• Describe how each of the following tests are performed:
 • Helium Dilution
 • Nitrogen Washout
 • Body Plethysmography
 • Pre-/Post-bronchodilator Study
 • Flow-Volume Loop
 • Bronchial Provocation
 • Exercise Testing
 • MIP and MEP

Objectives

• Given a set of pulmonary function results, determine
 • Percent predicted
 • Type of defect (e.g. restrictive, obstructive)
 • % improvement (Pre-/Post-) and significance
• Given a flow-volume loop, determine if an obstructive defect is due to a fixed, extrathoracic, or intrathoracic defect.

Objectives

• Describe the key steps in pulmonary function testing
• Describe the process of calibration of pulmonary function equipment.
• Differentiate between volume-displacing spirometers and flow-sensing spirometers.
• Describe how pneumotachs measure volume.
• List the advantages and disadvantages of both volume-displacing and flow-sensing spirometers.

Objectives

• Describe the meaning of the following ATS acceptability criteria:
 • Good start of the test
 • Good Effort
 • No coughing
 • No variable flows
 • No early termination
• Given a spirometry error code, state the cause of the error and the proper corrective measure to be undertaken.
• Given PFT results, determine the severity of an obstructive disorder.

Specialty Examinations

• Certification Examination for Entry Level Pulmonary Function Technologists
 • (CPFT)
• Registry Examination for Advanced Pulmonary Function Technologists
 • (RPFT)
Indications for Pulmonary Function Testing

- Identify the presence or absence of lung dysfunction suggested by history or physical signs/symptoms.
 - Normal, Obstructive, Restrictive
 - Diffusion Defects
 - ATS recommends testing in any patient over 45 years of age with a history of cigarette smoking or under 45 years of age with symptoms.

- Quantify the severity of known lung disease.
- Identify and quantify changes in pulmonary function over time.
 - Is the disease progressing?
 - Is the disease reversible?
 - Is therapy working?

- Assess the potential effects or response to environmental or occupational exposure.
- Assessment of Post-Op Risk
 - Surgical patients (thoracic or abdominal)
- Pulmonary Disability
 - Rehabilitation
 - Legal
 - Military

Pulmonary Function Testing does not diagnose specific pulmonary disease.

PFT Predicted Values

- Based on
 - Age
 - Gender
 - Height
 - Race (?)
 - Weight (?)

- Reference Values
 - Regression Formula (Egan p. 422)
 - Adult: Morris, Crapo, Knudson
 - Pediatrics: Hsu and Polgar

Normal Values

- What is generally “accepted”
 - 80-120% of predicted is considered “normal”.
 - Larger errors with flowrates (FEF25-75%)

- FEV1/FVC of greater than 70% “normal”

- What ATS says should be used
 - 5th percentile of predicted (LLN)
 - Allows for false positives
 - Predicted value - 1.645 x SEE
 - FEV1/FVC “normal” are subject to significant variability and should not be used.
VOLUMES
- Tidal Volume: 500 mL
- Inspiratory Reserve Volume: 3100 mL
- Expiratory Reserve Volume: 1200 mL
- Residual Volume: 1200 mL

CAPACITIES
- Inspiratory Capacity: 3600 mL
- Functional Residual Capacity: 2400 mL
- Vital Capacity: 4800 mL
- Total Lung Capacity: 6000 mL

Normal 20 year old, 70kg male

Lung Volume Measurement
- RV, FRC, TLC cannot be directly measured
- Four Methods
 - Closed Circuit: Helium Dilution
 - Open Circuit: Nitrogen Washout
 - Body Plethysmography
 - Thoracic Gas Volume (TGV) vs. FRC
 - Chest X-ray - TLC
 - Planimeter and ellipse method
- Key Points
 - Tests are begun at the end of a normal exhalation (FRC).
 - Highly reproducible and not effort dependent

HELIXM DILUTION
- Requires the patient to re-breathe a helium gas mixture of a known concentration through a closed circuit from a spirometer of a known volume.
- Helium is inert.
- Re-breathing allows for the equilibration of helium concentration between spirometer and lung.
 - Carbon dioxide scrubber (soda lime) needed.
 - Equilibration time is usually about 3 minutes.

HELIUM DILUTION
- Oxygen is added to spirometer to account for oxygen depleted by patient (spirometer volume remains constant).
- FRC = (\%He_{initial} - \%He_{final})/\%He_{final} x Volume
- He analyzer (Katharometers)
 - Wheatstone bridge
 - Thermal conductivity

Wheatstone Bridge

![Wheatstone Bridge Diagram]
HELIUM DILUTION CALCULATION

- GIVEN:
 - Initial Helium Percentage: 10%
 - Initial Spirometer Volume: 3 liters
 - Final Helium Percentage: 6%

\[
\text{FRC} = \frac{\% \text{He initial} - \% \text{He final}}{\% \text{He final}} \times \text{Volume Spirometer}
\]

\[
\text{FRC} = \frac{10\% - 6\%}{6\%} \times 3 \text{ liters}
\]

\[
\text{FRC} = 0.6667 \times 3 \text{ liters} = 2 \text{ liters}
\]

MUST CONVERT FROM ATPS to BTPS

\[
\text{FRC} - \text{ERV (from spirometry)} = \text{RV}
\]

\[
\text{FRC} + \text{IC} = \text{TLC}
\]

Problems with He Dilution

- No Leaks can be present from mouth, nose, ears or equipment
 - A ruptured tympanic membrane will result in inaccurate readings

NITROGEN WASHOUT

- The N₂ concentration in the lungs is 75-80%
- Patient breaths 100% O₂ and washes out the nitrogen.
 - The switch to breathing 100% oxygen must come at the end of a normal exhalation (i.e. at FRC).
 - The test continues until the N₂ is less than 1%
 - 3-4 minutes
 - COPD washout time may exceed 7 minutes
- Open circuit (no re-breathing)
- \[
\text{FRC} = \frac{\text{VE} \times \text{FEN}_2}{0.78}
\]
- Once FRC is determined, RV and TLC can be calculated

BODY PLETHYSMOGRAPHY

- Patient breaths normally & at end exhalation (FRC), a shutter is closed and the patient begins to pant
 - Panting Frequency is 1 Hertz (Hz) (one cycle per sec)
 - One-two breaths/sec with glottis open
 - Simplified explanation for a complex formula.
Thoracic Gas Volume

- Two pressure changes are measured
 - Drop in mouth pressure as patient attempts to inhale.
 - Increase in chamber pressure as patient’s chest expands.
- Volume change is measured in the body box.
 - TGV ~ FRC
 - Measures ALL gas volume in thorax, even the volume distal to an obstruction.
- Boyles Law \(V_1 P_1 = V_2 P_2 \)
 \[V_2 = \frac{V_1 P_1}{P_2} \]

Expiratory Flow Rate Measurements

- Measures the rate at which gas flows out of the lungs.
- Patency of the airways
- Severity of airway impairment
- Size of the patient’s airways

Forced Vital Capacity

- Volume of gas that can be exhaled as forcefully and rapidly as possible after a maximal inspiration.
Forced Expiratory Flow

- **200-1200**
 - Maximum expiratory flowrate.
 - Average flow rate between 200 and 1200 mL.
 - First 200 mL is ignored because of:
 - Inertia
 - Response time of spirometer
 - Good index of the patency of large airways

- **25-75%**
 - Maximum midexpiratory flowrate.
 - Average flow rate during middle 50% of FVC.
 - Can be used to assess the middle sized airways.
 - Caution: Use only as a secondary indice.

Peak Expiratory Flow Rate

- Peak Flow
- Maximum flow rate that can be achieved.
- Easiest measurement for determining “status” of airways.
- Variable results
 - Life of PF meters
 - Much easier to read from Flow-Volume Loop.

Maximum Voluntary Ventilation

- Largest volume of gas that can be breathed voluntarily in and out of the lungs in one minute.
- Test usually is performed for 12 to 15 seconds.
- Very effort- dependent

Flow Volume Loops

- Normal
- Obstructive
- Restrictive
- Fixed
- Variable Extrathoracic
- Variable Intrathoracic
This ratio can be used to determine the type of obstructive defect.

Normally this ratio is 0.8 to 1.0

\[
\frac{\text{FEF}_{50\%}}{\text{FIF}_{50\%}} = 0.8 \text{ to } 1.0
\]

- 6 L/sec
- 6 L/sec
- 6 L/sec
- 7 L/sec

0.85
Criteria

- *Three acceptable flow volume loops should be obtained*
- Sharp rise to PEFR; if not suspect poor effort or large airway obstruction
- F-V loops are used to detect upper airway obstruction
 - Extrathoracic obstruction occurs above the suprasternal notch
 - Intrathoracic obstruction occurs below the suprasternal notch
 - Fixed obstruction can occur either above or below

Variable Extrathoracic Obstruction

- Normal expiratory flows but decreased inspiratory flows
- FEF\textsubscript{50%}/FIF\textsubscript{50%} is greater than 1.0
- Causes
 - Upper airway tumor
 - Edema of epiglottis
 - Vocal cord paralysis
 - Vocal cord adhesions
 - Foreign body in upper airway
Variable Intrathoracic Obstruction

- Tracheomalacia
- Polychondritis
- Tumor near the carina
- Foreign body in trachea
- FEF$_{50}$/FIF$_{50}$% is less than 0.8

Fixed Obstruction

- This results in equally reduced flow rates
- The loop is squared off on both inspiration and expiration
- FEF$_{50}$/FIF$_{50}$% is normal
- Causes
 - Vocal cord stenosis (watch after extubation)
 - Goiter
 - Large foreign body
 - Tumor

Before & After Bronchodilator Studies

- Indication
 - FEV$_1$% < is less than 70%
 - A new medication is being evaluated.
 - Patient is known to have asthma or COPD.
- Medications should be withheld.
 - β_2 agonist: see CPGs
 - Methylxanthines 12 hours
 - Cromolyn Sodium 8-12 hours
 - Inhaled Steroids: maintain dosage
 - Anticholinergics 8 hours
Before & After Bronchodilator Studies

• Some patients may be unable to withhold medication
 • Document in interpretation section
• After administering the bronchodilator, wait 15 minutes before starting the post test
• If atropine is given, wait 45 - 60 min
• FEV₁ is most commonly used to quantify response

Pre/Post Example

<table>
<thead>
<tr>
<th></th>
<th>PATIENT A</th>
<th></th>
<th></th>
<th>PATIENT B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted</td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td></td>
</tr>
<tr>
<td>FVC (L)</td>
<td>4.70</td>
<td>2.93 (62)</td>
<td>3.46 (74)</td>
<td>2.93 (62)</td>
<td>2.95 (63)</td>
<td></td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>3.56</td>
<td>1.29 (34)</td>
<td>1.59 (45)</td>
<td>2.63 (74)</td>
<td>2.69 (76)</td>
<td></td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>76</td>
<td>44</td>
<td>46</td>
<td>90</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

Bronchodilator Mechanics

• Pre- & Post- bronchodilator PFT
 • Some disagreement (ATS, ITS, ACCP)
 • ATS:
 • 12% improvement and 200 mL in FVC
 • 12% improvement and 200 mL in FEV₁
 • % change = \(\frac{\text{Post FEV}_1 - \text{Pre FEV}_1}{\text{Pre FEV}_1} \times 100 \)

Diffusing Capacity

• Evaluates the ability of a test gas to get across the alveolar-capillary membrane.
• DLCO is a measurement of diffusion in the lungs.
• Predicted based on Height, Age, & Sex or Age, Sex, and BSA. Normal value is 25 ml CO/ min/ mmHg (STPD)
• Multiple methods of testing
 • Single Breath (breath hold) is the most common.
 • Gas diffusion across the A-C membrane is determined by:
 • Diffusion coefficient of the gas used (CO is best)
 • Patient should not have smoked for at least 24 hours.
 • Surface area of the membrane (DL/VA)
 • Thickness of the membrane
 • Blood volume and flow in the pulmonary capillary tree
 • Distribution of the inspired gas/blood flow (body position)
 • Hemoglobin or Hematocrit (correct for Hb level)

DLCO Testing Equipment
Bronchial Provocation

- Used to identify and characterize airway hyperresponsiveness.
- Used when patient has symptoms of bronchospasm with normal PFTs or uncertain post-bronchodilator results.
- Several provocative agents used:
 - Methacholine (most common)
 - Histamine
 - Cold air
 - Exercise
 - Nebulizer output and/or use of a dosimeter.
- Response quantified with spirometry (FEV₁, FVC, FEV₁/FVC%).
 - PC₂₀
- Need for increased monitoring secondary to bronchospasm.

Exercise Testing

- Allows for evaluation of the heart and lungs under conditions of increased metabolic demand.
- Cardiopulmonary variables (V̇ₑ, V̇ₐ, f, VO₂, VCO₂, ṘER [~RQ], Anaerobic Threshold) are assessed in relation to increasing workload (treadmill or exercise bike).
- Three types of tests:
 - Testing to evaluate the exercise tolerance
 - Testing to evaluate desaturation using oximetry
 - Testing to evaluate exercise-induced bronchospasm.

Anaerobic Threshold (AT)

Anaerobic Threshold (Ventilatory Threshold) occurs when the energy demands of the exercising muscles exceed the body’s ability to produce energy by aerobic metabolism.

Measurement of Respiratory Muscle Strength

- Maximum Inspiratory Pressure (MIP or NIF)
- Maximum Expiratory Pressure (MEP)
- Forced Vital Capacity
- MVV
MIP or NIF

- This is the lowest pressure developed during a forceful inspiration against an occluded airway.
- It is measured at RV or FRC and recorded as a negative number in cm H2O or mm Hg.
- A small leak is introduced between the occlusion and the patient’s mouth.
 - This eliminates pressures generated by the cheek muscles, but does not significantly affect readings.

- Is used to assess:
 - Response to respiratory muscle training.
 - Muscle strength during weaning from MV.
 - Record at least 3 efforts.
 - Pressure plateau of 1 to 3 seconds.
 - Maximal value should be recorded.
 - Two best efforts should be reproducible within 10% or 10 cm H2O.

MIP or NIF

- Normal values for adult should be greater than -60 cm H2O.
- Measured inspiratory muscle strength.
- Decreased values seen in
 - Neuromuscular diseases
 - Hyperinflation of the lungs
 - Chest wall or spinal deformities (scoliosis)
 - Stroke
- Value below -20 cm H2O is indication for mechanical ventilation.

Maximal Expiratory Pressure

- Highest pressure that can be developed during a forceful expiration against an occluded airway.
 - Usually measured at TLC.
 - It is reported as a positive number in cm H2O or mm Hg.
 - A small leak is introduced between the occlusion and the patient’s mouth.

MIP or NIF

- Healthy adults can generate a MEP over 100 cm H2O
- Is used to assess expiratory muscle strength and the ability of the patient to cough.
- Decreased values seen with:
 - Expiratory muscle weakness
 - Neuromuscular disease
 - High cervical spine fractures
 - Damage to nerves controlling the abdominal and accessory muscles
 - Obstructive lung disease
Obstructive Disease

- An obstructive ventilatory defect may be defined as a disproportionate reduction of maximal airflow from the lung with respect to the maximal volume (VC) that can be displaced from the lung. (ATS)
 - Airflow limitation
 - Airway narrowing during expiration
 - Airway Resistance problem
 - Evaluate the FEV₁, FVC, and FEV₁/FVC.

Obstructive Airway Diseases

- Lung Tumors/Neoplasm
- Foreign Bodies
- Goiters
- Vocal Cord Dysfunction
- Croup/Epiglottitis

Differential Diagnosis

- Obstructive Lung Diseases
 - Cystic Fibrosis
 - Bronchiectasis
 - Asthma
 - Chronic Bronchitis
 - Emphysema

Causes of Increased Airway Resistance

- Chronic inflammation and swelling
- Excessive mucus production and accumulation
- Tumor projecting into a bronchus
- Destruction and weakening of the distal airways
- Bronchial smooth muscle constriction
Dynamic Compression

- Effort-dependent portion of FVC
 - First 20-30% of volume exhaled
 - Peak flow
 - Muscular effort of individual
- Effort-independent portion of FVC
 - Last 70-80% of volume exhaled
 - Slope of Flow-Volume loop
 - Limited by dynamic compression of the airways
- Equal Pressure Point

Equal Pressure Point

- Pressure outside the airway equals pressure inside the airway at the EPP.
- When pressure outside exceeds that inside (as occurs during a forced exhalation), the airway collapses and flow stops.

Obstructive Disease Severity

<table>
<thead>
<tr>
<th>VC</th>
<th>FEV1/FVC</th>
<th>% Pred FEV1</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>≥ 100%</td>
<td>WNL</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
<td><100 & ≥ 70%</td>
<td>Physiological Variant</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
<td><70 & ≥ 60%</td>
<td>“Mild”</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
<td><60 & ≥ 50%</td>
<td>“Moderate”</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
<td><50 & ≥ 34%</td>
<td>“Severely”</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
<td><34%</td>
<td>“Very Severe”</td>
</tr>
</tbody>
</table>

Restrictive Disease

- A restrictive ventilatory defect is characterized physiologically by a reduction in TLC. (ATS)
 - Lung Parenchyma or Thoracic Pump defect
 - Problem getting air in
 - Lung/Thoracic Compliance problem
 - Evaluate lung volumes (TLC, RV, RV/TLC)

Restrictive Lung Diseases

- Interstitial Lung Diseases
 - Pneumoconiosis
 - Sarcoïdosis
 - Idiopathic pulmonary fibrosis
- Diseases of the chest wall and pleura
 - Pleurisy
 - Kyphoscoliosis/ Scoliosis
 - Pleural effusions
 - Obesity
 - Pneumothorax
Restrictive Lungs Diseases

- Neuromuscular Disorders
 - Guillain- Barre
 - Myasthenia Gravis
 - ALS or Lou Gehrig's disease
 - Diaphragmatic paralysis
- CHF/ Pulmonary Edema

American Thoracic Society (ATS)

- Criteria for PFT testing is based on recommendations of the ATS
- Standards have been published
 - 1979 - Snowbird Spirometry Standards
 - 1987 - Revised Standards
 - 1991 - Reference values and Interpretation
 - 1994 - Revised Standards
 - Selection of reference values
 - Spirometry performance
 - Set Quality Assurance Standards and have written a management and department procedure manual
 - 2005 - ATS/ ERS Task Force on Standardization of Testing and Interpretation
 - 2007 - ATS/ ERS Task Force on Spirometry in Children

Steps in PFT Process

Quality Assurance

- QA is a systematic approach to monitoring and evaluating the quality of the test and the test results
Quality Assurance

- **Pre-testing**
 - Demographics, History, Medications, Pre-test instructions, appropriate order, calibration of equip.
 - Competency of PFT personnel/ Training
 - Instrumentation/ Equipment

- **Testing**
 - Patient comprehension of instructions and expectations
 - Technologists instructions & training
 - Reference equations
 - Patient performance

- **Post-Testing**
 - Maneuver selection
 - Interpretation/ comments; Report Review

Spirometers

- **Volume Displacing Spirometers**
- **Flow Sensing Spirometers**
 - Pneumotachometers

Volume Displacing Spirometers

- **Water Seal Spirometer (Collins or Stead- Wells)**
 - “Gold Standard” - most accurate
 - Uses a Kymograph as a recording device
 - Best system to check accuracy of other PFT equipment
- **Dry Rolling Seal**
- **Bellows Type**
- **Diaphragm**

Volume Displacing Spirometers

- **Advantages**
 - Directly measure volume
 - Low cost
 - Ease of operation
- **Disadvantages**
 - LEAKS
 - Large and bulky (little portability)
 - Water in water seal needs changing
 - Without a microprocessor/computer, manual calculations are needed

QA for Water Seal Spirometers

- Water level checked daily
- Paper tracing speed checked daily
 - Paper speed 32, 160 & 1920 mm/ min
- Leak test & calibration checked daily
- Water changed weekly
SPIROMETER LEAK TEST

Flow Sensing Spirometers

- Use of various physical principles to produce a signal proportional to gas flow
- Integration is a process in which flow \((V/T)\) is divided into a large number of small intervals of time and volume is calculated

 \[
 \text{Flow} = \frac{\text{Volume}}{\text{Time}} \quad \text{Volume} = \text{Flow} \times \text{Time}
 \]
Uses of Flow Sensing Spirometers

- Respirometers
- Mechanical Ventilators
- Incentive Spirometers
- PFT equipment
- Exercise Equipment
- Metabolic Measurement Carts (Indirect Calorimetry)

Types of Flow Sensing Spirometers

- Pneumotachometers
- Turbine or Turbinometers
- Heated Wire Flow Sensors
- Sonic Devices (Sound waves)
 - Ultrasonic
 - Vortex

Flow Sensing Spirometers

- Pneumotachometers
 - Pressure Differential Flow Sensors
 - Uses a pressure change caused by a resistive element to calculate flow
 - Flow = Δ Pressure (any change in P will affect flow)
 - Resistance (keep resistance the same)

Types of Pneumotachs

- Fleisch Type (bundle of capillary tubes)
- Screen Type (fiber or metal)
- Ceramic Type
- Variable & Fixed Orifice
Turbine Device: Wright Respirometer

- Bladed rotating vane
- Inspiratory measurement port
- Expiratory measurement port

Advantages
- Smaller and usually more portable
- Computerized; no manual calculations
- Bidirectional devices provide flow volume loop capabilities
- Can be used to continuously measure minute ventilation

Flow Sensing Spirometers

Disadvantages
- More knowledge needed to operate
- Frequent calibration
- Moisture/secretions can affect results
- Gas composition can affect results
- May not be accurate at very high or low flowrates
Flow Sensing Peak Flow Meters

- More important to be precise than accurate
- Repeated measurements should be reproducible (valid) within 5% or 10 L/min whichever is greater
- Tend to underestimate flowrate as altitude increases

Spirometer Calibration

- Spirometers should be calibrated every day
- Volume Spirometers should be leak tested
- A Super Syringe is used to calibrate spirometers.
 - +/- 3% accuracy or 0.05L whichever is larger (diagnostic spirometer)
 - Use three flowrates 1 sec, 6 sec and between 1-6 sec
 - If using a 3 L super syringe, the volume measured by the device should be between 2.91 and 3.09 L

Spirometric Technique

Patient Preparation

- Explain which medications to stop taking before testing
- Instruct if physician wants patient to stop smoking before the test (DLCO)
- Explain to the patient the length of time
- Do not eat a full meal

Recommended Times for Withholding Bronchodilators

- Salmeterol 12 hours
- Ipratropium 6 hours
- Terbutaline 4-8 hours
- Albuterol 4-6 hours
- Metaproterenol 4 hours
- Isoetharine 3 hours

Patient Preparation

- Pulmonary history/physical assessment
 - Height, Weight, Age, Race, Sex
 - Patients who cannot stand use arm span to determine height
 - Height should be measured without shoes
- Predicted normal values are based on
 - Height
 - Age
 - Sex
 - Race (?)
Patient Preparation

- Determine any relative contraindications
 - Hemoptysis
 - Pneumothorax
 - Unstable cardiovascular status
 - Thoracic/abdominal or cerebral aneurysms
 - Recent eye surgery
 - Acute symptoms (vomiting, nausea, dizziness)
 - Recent surgery of thorax or abdomen
 - Should not do after a full meal

- Keep explanations simple
- Explain that the test does not hurt but requires “lots of effort”
- Explain that each test may require a number of efforts
- Position the patient
 - Chin up, feet flat on the floor, loosen clothing

- Explain & demonstrate the maneuver
 - Explain the procedure and what you expect from the patient
 - Stop oxygen just for test maneuvers
 - Demonstrate the maneuver
 - Coach the patient throughout the maneuver
- Evaluate for proper performance and carefully inspect the graphs

ATS Standards

- **3 Acceptable FVC Maneuvers**
 - If an acceptable maneuver cannot be obtained after 8 attempts, testing may be discontinued
- **2 Trials that are reproducible (valid)**
 - The two largest FVC from acceptable trials should not vary by more than 0.15 L
 - The two largest FEV₁ from acceptable trials should not vary by more than 0.15 L

 Can be 100 mL if the FVC is less than or equal to 1.0 L

Acceptability Criteria

- **Good start of the test**
 - No hesitation.
 - An extrapolated volume of ≤ 5% of the FVC or 150 mL, whichever is greater.
- **Good Effort**
 - No coughing (especially during the 1st sec)
 - No variable flows
 - Minimum exhalation of 6 seconds unless there is a plateau
Extrapolated Volume

Every test shows deteriorating flowrates

All tests must be reported at BTPS
All predicted values are based on
 - Age
 - Height
 - Sex
 - Race (?)
Weight is reported, but not used in prediction

Office/Bedside Spirometry

FEV₆ can replace FVC as an end of test criteria
- Shortens the testing session
- Avoids overexertion while attempting a FVC
- Airway obstruction will be detected when FEV₆/FEV₅ are below the lower limit of normal
APPENDIX 4: Selected Adult Reference Populations, Methods, and Regression Equations for Spirometry and Lung Volumes

Table A4.1 PVC (L)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Race</th>
<th>Age Range</th>
<th>No.</th>
<th>Sex</th>
<th>Method</th>
<th>Site</th>
<th>Regression Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abernathy</td>
<td>2006</td>
<td>B</td>
<td>20-44</td>
<td>51</td>
<td>M</td>
<td>W</td>
<td>New York</td>
<td>New York</td>
</tr>
<tr>
<td>Cocker</td>
<td>1999</td>
<td>W</td>
<td>20-59</td>
<td>84</td>
<td>M</td>
<td>W</td>
<td>New Mexico</td>
<td>New Mexico</td>
</tr>
<tr>
<td>Chalmers</td>
<td>1978</td>
<td>W</td>
<td>15-39</td>
<td>973</td>
<td>M</td>
<td>W</td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Cripps</td>
<td>1981</td>
<td>W</td>
<td>15-41</td>
<td>115</td>
<td>M</td>
<td>W</td>
<td>Utah</td>
<td>Utah</td>
</tr>
<tr>
<td>Dabeau</td>
<td>1981</td>
<td>W</td>
<td>20-59</td>
<td>279</td>
<td>M</td>
<td>W</td>
<td>Utah</td>
<td>Utah</td>
</tr>
<tr>
<td>Gooluk</td>
<td>1997</td>
<td>A</td>
<td>20-49</td>
<td>134</td>
<td>M</td>
<td>W</td>
<td>Singapore</td>
<td>Singapore</td>
</tr>
<tr>
<td>Gooluk</td>
<td>1994</td>
<td>W</td>
<td>20-49</td>
<td>134</td>
<td>M</td>
<td>W</td>
<td>Singapore</td>
<td>Singapore</td>
</tr>
<tr>
<td>Randhawa</td>
<td>1993</td>
<td>W</td>
<td>25-45</td>
<td>86</td>
<td>M</td>
<td>W</td>
<td>Arizona</td>
<td>Arizona</td>
</tr>
<tr>
<td>Morice</td>
<td>1971</td>
<td>W</td>
<td>20-44</td>
<td>317</td>
<td>M</td>
<td>W</td>
<td>Ontario</td>
<td>Ontario</td>
</tr>
<tr>
<td>Nolsa</td>
<td>1971</td>
<td>B</td>
<td>15-78</td>
<td>623</td>
<td>M</td>
<td>W</td>
<td>Africa</td>
<td>Africa</td>
</tr>
</tbody>
</table>

Table 2 - Classification of Severity*

<table>
<thead>
<tr>
<th>Stage</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FEV<sub>1</sub>/FVC < 70%</td>
</tr>
<tr>
<td>2</td>
<td>FEV<sub>1</sub> < 50% predicted</td>
</tr>
<tr>
<td>3</td>
<td>FEV<sub>1</sub>/FVC < 70%</td>
</tr>
<tr>
<td>4</td>
<td>FEV<sub>1</sub>/FVC < 50%</td>
</tr>
<tr>
<td>5</td>
<td>FEV<sub>1</sub> < 30% predicted</td>
</tr>
<tr>
<td>6</td>
<td>FEV<sub>1</sub> < 30% predicted</td>
</tr>
<tr>
<td>7</td>
<td>FEV<sub>1</sub>/FVC < 70%</td>
</tr>
<tr>
<td>8</td>
<td>FEV<sub>1</sub>/FVC < 50%</td>
</tr>
<tr>
<td>9</td>
<td>FEV<sub>1</sub> < 30% predicted</td>
</tr>
</tbody>
</table>

*Note: The classification criteria are based on percent predicted values for FEV₁ and FVC.