Pulmonary Function Testing

Module L

Objectives

- State the indications for pulmonary function testing.
- Describe how each of the following tests are performed:
 - Helium Dilution
 - Nitrogen Washout
 - Body Plethysmography
 - Pre-/Post-bronchodilator Study
 - Flow-Volume Loop
 - Bronchial Provocation
 - Exercise Testing
 - MIP and MEP

Objectives

- Given a set of pulmonary function results, determine
 - Percent predicted
 - Type of defect (e.g. restrictive, obstructive)
 - % improvement (Pre-/Post-) and significance
- Given a flow-volume loop, determine if an obstructive defect is due to a fixed, extrathoracic, or intrathoracic defect.

Objectives

- Describe the key steps in pulmonary function testing
- Describe the process of calibration of pulmonary function equipment.
- Differentiate between volume-displacing spirometers and flow-sensing spirometers.
- Describe how pneumotachs measure volume.
- List the advantages and disadvantages of both volume-displacing and flow-sensing spirometers.

Objectives

- Describe the meaning of the following ATS acceptability criteria:
 - Good start of the test
 - Good Effort
 - No coughing
 - No variable flows
 - No early termination
- Given a spirometry error code, state the cause of the error and the proper corrective measure to be undertaken.
- Given PFT results, determine the severity of an obstructive disorder.

Specialty Examinations

- Certification Examination for Entry Level Pulmonary Function Technologists
 - (CPFT)
- Registry Examination for Advanced Pulmonary Function Technologists • (RPFT)

Indications for Pulmonary Function Testing

- Identify the presence or absence of lung dysfunction suggested by history or physical signs /symptoms.
 - Normal, Obstructive, Restrictive
 - Diffusion Defects
 - ATS recommends testing in any patient over 45 years of age with a history of cigarette smoking or under 45 years of age with symptoms.

Indications for Pulmonary Function Testing

- Quantify the severity of known lung disease.
- Identify and quantify changes in pulmonary function over time.
 - Is the disease progressing?
 - Is the disease reversible?
 - Is therapy working?

Indications for Pulmonary Function Testing

- Assess the potential effects or response to environmental or occupational exposure.
- Assessment of Post-Op Risk
 Surgical patients (thoracic or abdominal)
- Pulmonary Disability
 - Rehabilitation
 - Legal
 - Military

Pulmonary Function Testing does not diagnose specific pulmonary disease.

PFT Predicted Values

- Based on
 - Age
 - Gender
 - Height
 - Race (?)
 - Weight (?)
- Reference Values
 - Regression Formula (Egan p. 422)
 Adult: Morris, Crapo, Knudson
 - Adult: Morris, Crapo, Knue
 Pediatrics: Hsu and Polga
 - Pediatrics: Hsu and Polgar

Normal Values

- What is generally What ATS says "accepted" should be used
 - 80-120 % of predicted is considered
 - "normal". • Larger errors with
 - flowrates (FEF_{25-75%})
 - FEV₁/FVC of greater than 70% "normal"
- What ATS says should be used • 5th percentile of predicted (LLN)
 - Predicted (LLN)
 Allows for false
 - positives
 - Predicted value 1.645 x SEE
- FEV₁/FVC "normal" are subject to significant variability and should not be used.

HELIUM DILUTION Requires the patient to re-breathe a helium gas mixture of a known concentration through a closed circuit from a spirometer of a known volume. Helium is inert.

- Re-breathing allows for the equilibration of helium concentration between spirometer and lung.
 - Carbon dioxide scrubber (soda lime) needed.
 - Equilibration time is usually about 3 minutes.

HELIUM DILUTION

- Oxygen is added to spirometer to account for oxygen depleted by patient (spirometer volume remains constant).
- FRC = (%He initial %He final)/% He final x Volume Spirometer
- He analyzer (Katharometers)
 - Wheatstone bridge
 - Thermal conductivity

NITROGEN WASHOUT

- The N₂ concentration in the lungs is 75-80%
 Patient breaths 100% O2 and washes out the nitrogen.
 - The switch to breathing 100% oxygen must come at the end of a normal exhalation (i.e. at FRC).
- The test continues until the N₂ is less than 1% • 3-4 minutes
 - COPD washout time may exceed 7 minutes
- Open circuit (no re-breathing)
- FRC = $(V_E \times F_E N_2)/(0.78)$
- Once FRC is determined, RV and TLC can be calculated

BODY PLETHYSMOGRAPHY

- Patient breaths normally & at end exhalation (FRC), a shutter is closed and the patient begins to pant
 - Panting Frequency is 1 Hertz (Hz) (one cycle per sec)
 - One-two breaths/sec with glottis open
- Simplified explanation for a complex formula.

Maximum Voluntary Ventilation

- Largest volume of gas that can be breathed voluntarily in and out of the lungs in one minute.
 - Test usually is performed for 12 to 15 seconds.
 - Very effort-dependent

Flow Volume Loops

- Normal
- Obstructive
- Restrictive
- Fixed
- Variable Extrathoracic
- Variable Intrathoracic

Fixed Obstruction

- This results in equally reduced flowrates
- The loop is squared off on both inspiration and expiration
- FEF_{50%}/FIF_{50%} is normal
- Causes
 - Vocal cord stenosis (watch after extubation)
 - Goiter
 - Large foreign body
 - Tumor

Before & After Bronchodilator Studies

- Indication
 - FEV₁% < is less than 70%.
 - A new medication is being evaluated.
 - Patient is known to have asthma or COPD.
- Medications should be withheld.
 - β₂ agonist: see CPGs
 - Methylxanthines 12 hours
 - Cromolyn Sodium 8-12 hours
 - Inhaled Steroids: maintain dosage
 - Anticholinergics 8 hours

Before & After Bronchodilator Studies

- Some patients may be unable to withhold medication
- Document in interpretation section
- · After administering the bronchodilator, wait 15 minutes before starting the post test
- If atropine is given, wait 45 60 min
- FEV₁ is most commonly used to quantify response

Bronchodilator Mechanics Pre- & Post-bronchodilator PFT Some disagreement (ATS, ITS, ACCP) • ATS: 12 % improvement and 200 mL in FVC OR 12 % improvement and 200 mL in FEV1 • % change = <u>Post FEV₁</u> - <u>Pre FEV₁</u> x

100

Pre FEV₁

	Pre	Post	Examı	ole	
		PATIE	ENT A	PATI	ENT B
	Predicted	Before	After	Before	After
FVC (L)	4.70	2.93 (62)	3.46 (74)	2.93 (62)	2.95 (63)
		23	%		
FEV ₁ (L)	3.56	1.29 (34)	1.59 (45)	2.63 (74)	2.69 (76)
			300	mL	
FEV ₁ /FVC (%)	76	44	46	90	91
L					

Before & After Bronchodilator Studies

- Avoid using the $\ensuremath{\mathsf{FEF}_{25-75\%}}$ because it is heavily dependent on FVC.
- · Common to see improvements in FEV₁ but no improvement in FEF_{25-75%}.
- If FEF 25-75% is used to determine response it should be isovolume corrected for changes in FVC.

DIFFUSING CAPACITY

- Evaluates the ability of a test gas to get across the alveolar-capillary membrane.
- DL_{co} is a measurement of diffusion in the lungs. Predicted based on Height, Age, & Sex or Age, Sex, and BSA. Normal value is 25 ml CO/min/mmHg (STPD)
- · Multiple methods of testing
- Single Breath (breath hold) is the most common. Gas diffusion across the A-C membrane is
- determined by:Diffusion coefficient of the gas used (CO is best)
- · Patient should not have smoked for at least 24 hours.
- Surface area of the membrane (DL/VA)
- · Thickness of the membrane
- · Blood volume and flow in the pulmonary capillary tree · Distribution of the inspired gas/blood flow (body
- position Hemoglobin or Hematocrit (correct for Hb level)

BRONCHIAL PROVOCATION Used to identify and characterize airway hyperresponsiveness. Used when patient has symptoms of bronchospasm with normal PFTs or uncertain post-bronchodilator results.

- Several provocative agents used:
 - Methacholine (most common)
 - Histamine
 - Cold air
 - Exercise
- Nebulizer output and/or use of a dosimeter.
- Response quantified with spirometry (FEV $_{\rm 1},$ FVC, FEV $_{\rm 1}/FVC\%).$ • PĊ₂₀
- Need for increased monitoring secondary to bronchospasm.

- · Testing to evaluate exercise-induced
 - bronchospasm.

Measurement of Respiratory Muscle Strength

- Maximum Inspiratory Pressure (MIP or NIF)
- Maximum Expiratory Pressure (MEP)
- Forced Vital Capacity
- MVV

MIP or NIF

- This is the lowest pressure developed during a forceful inspiration against an occluded airway.
- It is measured at RV or FRC and recorded as a negative number in cm H₂0 or mm Hg.
- A small leak is introduced between the occlusion and the patient's mouth.
 - This eliminates pressures generated by the cheek muscles, but does not significantly affect readings.

MIP or NIF

- Is used to assess:
 - Response to respiratory muscle training.
 - Muscle strength during weaning from MV.
- Record at least 3 efforts.
- Pressure plateau of 1 to 3 seconds.
- Maximal value should be recorded.
- Two best efforts should be reproducible within 10% or 10 cm $\rm H_20.$

MIP or NIF

- Normal values for adult should be greater than -60 cm H_2O .
- Measures inspiratory muscle strength.
- Decreased values seen in
 - Neuromuscular diseases
 - Hyperinflation of the lungs
 - Chest wall or spinal deformities (scoliosis)
 Stroke
- Value below 20 cmH₂O is indication for mechanical ventilation.

Maximal Expiratory Pressure

- Highest pressure that can be developed during a forceful expiration against an occluded airway.
 - Usually measured at TLC.
- It is reported as a positive number in cm H_20 or mm Hg.
- A small leak is introduced between the occlusion and the patient's mouth.

MEP

- Healthy adults can generate a MEP over 100 cm H20
- Is used to assess *expiratory muscle strength* and the ability of the patient to *cough.*
- · Decreased values seen with:
 - Expiratory muscle weakness
 - Neuromuscular disease
 - High cervical spine fractures
 - Damage to nerves controlling the abdominal and accessory muscles
 - Obstructive lung disease

Obstructive Disease

- An obstructive ventilatory defect may be defined as a disproportionate reduction of maximal airflow from the lung with respect to the maximal volume (VC) that can be displaced from the lung. (ATS)
 - Airflow limitation
 - Airway narrowing during expiration
 - Airway Resistance problem
 - Evaluate the FEV₁, FVC, and FEV₁/FVC.

- Obstructive Lung Diseases
 - Cystic Fibrosis
 - Bronchiectasis
 - Asthma
 - Chronic Bronchitis
 - Emphysema

Obstructive Airway Diseases

- Lung Tumors/Neoplasm
- Foreign Bodies
- Goiters
- Vocal Cord Dysfunction
- Croup/Epiglottitis

Causes of Increased Airway Resistance

- Chronic inflammation and swelling
- Excessive mucus production and accumulation
- Tumor projecting into a bronchus
- Destruction and weakening of the distal airways
- Bronchial smooth muscle constriction

• Pressure outside

- the airway equals pressure inside the airway at the EPP.
- When pressure outside exceeds that inside (as occurs during a forced exhalation), the airway collapses and flow stops.

Obstru	ctive Di	sease Sev	/erity
VC	FEV ₁ /FVC	% Pred FEV ₁	Severity
Ν	N		WNL
-	L	<u>></u> 100 %	Physiological Variant
-	L	<100 & <u>></u> 70%	"Mild"
-	L	<70 & <u>></u> 60%	"Moderate"
-	L	<60 & <u>></u> 50%	"Moderately Severe"
-	L	<50 & <u>></u> 34%	"Severe"
-	L	<34%	"Very Severe"

Old	0: At Risk	I: Mild	II: Mo IIA	oderate IIB	III: Severe
New	0: At Risk	I: Mild	II: Moderate	III: Severe	IV: Very Severe
Characteristics	Chronic symptoms Exposure to rick factors Normal spirometry	FEV ₁ /FVC < 70% FEV ₁ ≥ 80% With or without symptoms	FEV ₁ /FVC < 70% 50% ≤ FEV ₁ < 80% With or without symptoms	 FEV₁/FVC < 70% 30% ≤ FEV₁ < 50% With or without symptoms 	FEV ₁ /FVC < 70% FEV ₁ < 30% or FEV ₁ < 50% predicted plus chronic respiratory failure
		Avoidance of r	isk factor(s); influe	enza vaccination	1
		Add	short-acting bron	chodilator when	needed
	X		Add regular tre long-acting bro Add rehabilitat	atment with one inchodilators	e or more
		-	- (100/3% he 204 h	Add inhaled g	lucocorticosteroids acerbations
	$\left \right \left \right $		4.1. (774) (774)		Add long- term oxygen if chronic respiratory failure <i>Consider</i> surgical treatments

Restrictive Disease

- A restrictive ventilatory defect is characterized physiologically by a reduction in TLC. (ATS)
 - Lung Parenchyma or Thoracic Pump defect
 - Problem getting air in
 - Lung/Thoracic Compliance problem
 - Evaluate lung volumes (TLC, RV, RV/TLC)

Restrictive Lung Diseases

- Interstitial Lung Diseases
 - Pneumoconiosis
 - Sarcoidosis
- Idiopathic pulmonary fibrosis
- Diseases of the chest wall and pleura
 - Pleurisy
 - Kyphoscoliosis/Scoliosis
 - Pleural effusions
 - Obesity
 - Pneumothorax

- Neuromuscular Disorders
 - Guillian-Barre
 - Myasthenia Gravis
 - ALS or Lou Gehrig's disease
 - Diaphragmatic paralysis
- CHF/Pulmonary Edema

Quality Assurance

- Pre-testing
 - Demographics, History, Medications, Pre-test instructions, appropriate order, calibration of equip.
 - Competency of PFT personnel/Training
 - Instrumentation/Equipment
- Testing
 - Patient comprehension of instructions and expectations
 - Technologists instructions & training
 - Reference equations
 - Patient performance
- Post-Testing

 - Maneuver selection
 Interpretation/comments; Report Review

Spirometers

- Volume Displacing Spirometers
- Flow Sensing Spirometers Pneumotachometers

Volume Displacing Spirometers

- Water Seal Spirometer (Collins or Stead-Wells)
 - "Gold Standard" most accurate
 - Uses a Kymograph as a recording device
 - · Best system to check accuracy of other PFT equipment
- Dry Rolling Seal
- · Bellows Type
- Diaphragm

Volume Displacing Spirometers

- Advantages
 - · Directly measure volume
 - Low cost
 - Ease of operation
- Disadvantages
 - LEAKS
 - Large and bulky (little portability)
 - Water in water seal needs changing
 - Without a microprocessor/computer. manual calculations are needed

QA for Water Seal Spirometers

- Water level checked daily
- Paper tracing speed checked daily • Paper speed 32, 160 & 1920 mm/min
- Leak test & calibration checked daily
- Water changed weekly

Uses of Flow Sensing Spirometers

- Respirometers
- Mechanical Ventilators
- Incentive Spirometers
- PFT equipment
- Exercise Equipment
- Metabolic Measurement Carts (Indirect Calorimetry)

Types of Flow Sensing Spirometers

- Pneumotachometers
- Turbine or Turbinometers
- Heated Wire Flow Sensors
- Sonic Devices (Sound waves)
 - Ultrasonic
 - Vortex

Flow Sensing Spirometers

- Pneumotachometers
 - Pressure Differential Flow Sensors
 - Uses a pressure change caused by a resistive element to calculate flow
 - Flow = Δ Pressure (any change in P will affect flow)

Resistance (keep resistance the same)

Types of Pneumotachs

- Fleisch Type (bundle of capillary tubes)
- Screen Type (fiber or metal)
- Ceramic Type
- Variable & Fixed Orifice

Flow Sensing Spirometers

Advantages

- Smaller and usually more portable
- Computerized; no manual calculations
- Bidirectional devices provide flow volume loop capabilities
- Can be used to continuously measure minute ventilation

Flow Sensing Spirometers

- Disadvantages
 - More knowledge needed to operate
 - Frequent calibration
 - Moisture/secretions can affect results
 - Gas composition can affect results
 - May not be accurate at very high or low flowrates

Flow Sensing Peak Flow Meters

- More important to be precise than accurate
- Repeated measurements should be reproducible (valid) within 5% or 10 L/min whichever is greater
- Tend to underestimate flowrate as altitude increases

Spirometer Calibration

- Spirometers should be calibrated every day
- Volume Spirometers should be leak tested
- A Super Syringe is used to calibrate spirometers.
 - +/-3% accuracy or 0.05L whichever is larger (diagnostic spirometer)
 - Use three flowrates 1 sec, 6 sec and between 1-6 sec
 - If using a 3 L super syringe, the volume measured by the device should be between 2.91 and 3.09 L

Spirometric Technique

Patient Preparation

- Explain which medications to stop taking before testing
- Instruct if physician wants patient to stop smoking before the test (DLCO)
- Explain to the patient the length of time
- Do not eat a full meal

Recommended Times for Withholding Bronchodilators

- Salmeterol
 - 12 hours
- Ipratropium
- 6 hours

4-8 hours

- Terbutaline
- Albuterol
 4-6 hours
- Metaproterenol 4 hours
- Isoetharine 3 hours

Patient Preparation

- Pulmonary history/physical assessment
 - Height, Weight, Age, Race, Sex
 - Patients who cannot stand use arm span to determine height
 - Height should be measured without shoes
- Predicted normal values are based on
 - Height
 - Age
 - Sex
 - Race (?)

Patient Preparation

- Determine any relative contraindications
 - Hemoptysis
 - Pneumothorax
 - Unstable cardiovascular status
 - Thoracic/abdominal or cerebral aneurysms
 - Recent eye surgery
 - Acute symptoms (vomiting, nausea, dizziness)
 - Recent surgery of thorax or abdomen
 Should not do after a full meal

Patient Preparation

- Keep explanations simple
- Explain that the test does not hurt but requires "*lots of effort*"
- Explain that each test may require a number of efforts
- · Position the patient
 - Chin up, feet flat on the floor, loosen clothing

Patient Preparation

- Explain & demonstrate the maneuver
 - Explain the procedure and what you expect from the patient
 - Stop oxygen just for test maneuvers
 - Demonstrate the maneuver
 - Coach the patient throughout the manuever
- Evaluate for proper performance and carefully inspect the graphs

ATS Standards

- 3 Acceptable FVC Maneuvers
 - If an acceptable maneuver cannot be obtained after 8 attempts, testing may be discontinued
- 2 Trials that are reproducible (valid)
 - \bullet The two largest FVC from acceptable trials should not vary by more than 0.15 L
 - The two largest ${\rm FEV}_1$ from acceptable trials should not vary by more than 0.15 L

Can be 100 mL if the FVC is less than or equal to 1.0 L

Acceptability Criteria

- Good start of the test
 - No hesitation.
 - An extrapolated volume of \leq 5% of the FVC or 150 mL, whichever is greater.
- Good Effort
- No coughing (especially during the 1st sec)
- No variable flows
- No early termination
 - Minimum exhalation of 6 seconds unless there is a plateau

	Maneuver acceptability
Message	Criterion
Don't hesitate	back extrapolated volume > 150 mL
Blast out faster	time to peak expiratory flow > 120 ms
Blow out longer	change in exhaled volume during the last 0.5 s $>$ 100 mL, and expiratory time < 2 s (see also here)
Blast out harder	PEF values do not match within 1.0 L/s,
Deeper breath	FVC values do not match within 150 mL
	Only one error message is displayed (in the order of priority listed above)
Good test session	After 2 acceptable maneuvers that match
	Quality control grades
А	at least two acceptable maneuvers with the largest two FEV1 ν matching within 100 mL
В	at least two acceptable maneuvers with FEV1 values matching 101 and 150 mL $$
с	at least two acceptable maneuvers with FEV1 values matching 151 and 200 mL $$
D	only one acceptable maneuver, or more than one, but the FEV match > 200 mL (with no interpretation)
	no acceptable maneurers (with no intermetation)

All tests must be reported at BTPS
All predicted values are based on

Age
Height
Sex
Race (?)

Weight is reported, but not used in prediction

Office/Bedside Spirometry

- FEV₆ can replace FVC as an end of test criteria
 - Shortens the testing session
 - Avoids overexertion while attempting a FVC
 - Airway obstruction will be detected when FEV₁/FEV₆ are below the lower limit of normal

AI	PEND	IX 4: S	electe	d Adul	t Re	ference	Populations,	Methods, and Regressio
			Equ	ations	for S	Spirome	try and Lung	Volumes
Table A4.1	FVC (L)						
Reference	Year	Race	Age Range	No. Subjects	Sex	Method ^b	Site	Regression Equation
Abramowitz	1965	в	20-54	51	м	ws	New Jersey	0.051(Hcm) - 0.018(A) - 3.82
	1988	н	25 - 80	80	м	ws	New Mexico	4.959(Hm) = 0.028(A) = 2.88
Coultas	1000					- n		
Coultas Cherniack	1972	w	15 - 79	870	M	в	Canada	0.121(Hin) - 0.0136(A) - 3.184
Coultas Cherniack Crapo	1972 1981	W W	15–79 15–91	870 125	M	WS B	Canada Utah	0.121(Hin) - 0.0136(A) - 3.184 0.06(Hcm) - 0.0214(A) - 4.65
Coultas Cherniack Crapo Crapo	1972 1981 1990	W W H	15–79 15–91 25–75	870 125 116	M M M	WS RS	Canada Utah Utah, California	0.121(Hin) - 0.0136(A) - 3.184 0.06(Hcm) - 0.0214(A) - 4.65 0.0562(Hcm) - 0.0313(A) - 3.788
Coultas Cherniack Crapo Crapo DaCosta	1972 1981 1990 1971	W W H A	15–79 15–91 25–75 20–66	870 125 116 134	M M M M	WS RS WS	Canada Utah Utah, California Singapore	0.121(Hin) = 0.0136(A) = 3.184 0.06(Hcm) = 0.0214(A) = 4.65 0.0562(Hcm) = 0.0313(A) = 3.788 0.041(Hcm) = 0.0105(A) = 2.76
Coultas Cherniack Crapo Crapo DaCosta Enright	1972 1981 1990 1971 1993	W W H A W	15-79 15-91 25-75 20-66 65 85	870 125 116 134 245	M M M M	WS RS WS WS	Canada Utah Utah, California Singapore USA	$\begin{array}{l} 0.121({\rm Hin}) = 0.0136({\rm A}) = 3.184\\ 0.06({\rm Hcm}) = 0.0214({\rm A}) = 4.65\\ 0.0562({\rm Hcm}) = 0.0313({\rm A}) = 3.788\\ 0.041({\rm Hcm}) = 0.0105({\rm A}) = 2.76\\ 0.0567({\rm Hcm}) = 0.0206({\rm A}) = 4.37\\ 0.0206({\rm A}) =$
Coultas Cherniack Crapo Crapo DaCosta Enright Knudson	1972 1981 1990 1971 1993 1983	W W H A W W	15-79 15-91 25-75 20-66 65 85 25-85 25-85	870 125 116 134 245 86 517	M M M M	B WS RS WS P WS	Canada Utah Utah, California Singapore USA Arizona	$\begin{array}{l} 0.121(\mathrm{Hin})-0.0136(\mathrm{A})-3.184\\ 0.06(\mathrm{Hcm})-0.0214(\mathrm{A})-4.65\\ 0.0562(\mathrm{Hcm})-0.0313(\mathrm{A})-3.788\\ 0.041(\mathrm{Hcm})-0.0105(\mathrm{A})-2.76\\ 0.0567(\mathrm{Hcm})-0.0206(\mathrm{A})-4.37\\ 0.0844(\mathrm{Hcm})-0.0208(\mathrm{A})-8.781\\ 0.0490(\mathrm{Hcm})-0.0298(\mathrm{A})-8.781\\ 0.0490(\mathrm{Hcm})-0.0490(\mathrm{Hcm})-8.781\\ 0.0490(\mathrm{Hcm})-0.0490(\mathrm{Hcm})-8.781\\ 0.0490(\mathrm{Hcm})-0.0490(\mathrm{Hcm})-8.781\\ 0.0490(\mathrm{Hcm})-0.0490(\mathrm{Hcm})-8.781\\ 0.0490(\mathrm{Hcm})-0.0490(\mathrm{Hcm})-8.781\\ 0.0490(\mathrm{Hcm})-8.781\\ 0.0490$
Coultas Cherniack Crapo Crapo DaCosta Enright Knudson Morris Murgafa	1972 1981 1990 1971 1993 1983 1971	W H A W W	15-79 15-91 25-75 20-66 65-85 25-85 20-84	870 125 116 134 245 86 517 692	M M M M M	B WS RS WS WS P WS	Canada Utah Utah, California Singapore USA Arizona Oregon	$\begin{array}{l} 0.121(\mathrm{Hin}) = 0.0136(\mathrm{A}) = 3.184\\ 0.06(\mathrm{Hcm}) = 0.0214(\mathrm{A}) = 4.65\\ 0.0552(\mathrm{Hcm}) = 0.0313(\mathrm{A}) = 3.788\\ 0.041(\mathrm{Hcm}) = 0.0105(\mathrm{A}) = 2.76\\ 0.0567(\mathrm{Hcm}) = 0.0206(\mathrm{A}) = 4.37\\ 0.0844(\mathrm{Hcm}) = 0.0296(\mathrm{A}) = 8.781\\ 0.148(\mathrm{Hin}) = 0.025(\mathrm{A}) = 4.241\\ 0.0604(\mathrm{Hcm}) = 0.025(\mathrm{A}) = 4.241\\ 0.0604(\mathrm{Hcm}$
Coultas Cherniack Crapo DaCosta Enright Knudson Morris Mustafa Poherte	1972 1981 1990 1971 1993 1983 1971 1977 1991	W H A W W B	15-79 15-91 25-75 20-66 65 85 25-85 20-84 15-74 18 86	870 125 116 134 245 86 517 623 93	M M M M M M	B WS RS WS WS P WS B P	Canada Utah Utah, California Singapore USA Arizona Oregon Africa London	$\begin{array}{l} 0.121(\mathrm{Him}) - 0.0136(\mathrm{A}) - 3.184\\ 0.06(\mathrm{Hcm}) - 0.0214(\mathrm{A}) - 4.65\\ 0.0562(\mathrm{Hcm}) - 0.0313(\mathrm{A}) - 3.788\\ 0.041(\mathrm{Hcm}) - 0.0105(\mathrm{A}) - 2.76\\ 0.0567(\mathrm{Hcm}) - 0.0296(\mathrm{A}) - 3.78\\ 0.0567(\mathrm{Hcm}) - 0.0298(\mathrm{A}) - 8.781\\ 0.148(\mathrm{Him}) - 0.0298(\mathrm{A}) - 8.781\\ 0.148(\mathrm{Him}) - 0.0298(\mathrm{A}) - 8.781\\ 0.040(\mathrm{Hcm}) - 0.026(\mathrm{A}) - 8.781\\ 0.040(\mathrm{Hcm}) - 0.016(\mathrm{A}) - 6.14\\ 0.060(\mathrm{Hcm}) - 0.098(\mathrm{A}) \leq 2.77\\ 0.084(\mathrm{Hcm}) - 0.098(\mathrm{A}) \leq 2.77\\ 0.084(\mathrm{Hcm}) - 0.098(\mathrm{A}) \leq 2.78\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) \leq 0.086\\ 0.086(\mathrm{A}) \leq 0.086(\mathrm{A}) < 0.086($

	Table 2 - Classification of Severity*			
Stage	Characteristics			
0: At Risk	romal spiromatry chronic symptoms (cough, sputum production)			
I: Mild COPD	 FEV1/FVC < 70% FEV1 ≥ 80% predicted with or without chronic symptoms (cough, sputum production) 			
II: Moderate COPD	 FEV₁/FVC < 70% 50% ≤ FEV₁ < 80% predicted with or without chronic symptoms (cough, sputum production) 			
III: Severe COPD	 FEV1/FVC < 70% 30% ≤ FEV1 < 50% predicted with or without chronic symptoms (cough, sputum production) 			
IV: Very Severe COPD	FEV1/FVC < 70% FEV1 < 30% predicted or FEV1 < 50% predicted plus chronic respiratory failure			