ADVANCED CAPNOGRAPHY

Objectives
- List three indications for capnography.
- Differentiate between mainstream and sidestream capnography.
- Given a time-based capnogram, identify and distinguish between the phases.
- Given a time-based capnogram, interpret any abnormality present.
- Given a volume-based capnogram, identify and distinguish between the phases.
- Given a volume-based capnogram, state the significance of each phase.

Objectives
- Given a volume-based capnogram, interpret any abnormality present.
- List two instances where volume-based capnography can lead to improved patient management.
- State the formula used for the calculation of non-invasive cardiac output via the CO₂ Partial-Rebreathing method.
- Describe the set-up used to measure cardiac output via the CO₂ Partial-Rebreathing method.
- List two additional uses for capnography.

Physiology of Carbon Dioxide
ALL THREE ARE IMPORTANT!

Carbon Dioxide Monitoring Technology
- Mass Spectroscopy
- Methods of Sampling
 - Mainstream
 - Sidestream
 - Microstream
Key Technological Issues

• Calibration
• Moisture Control
• Sample flow rate
• Transit time
• Response time

Sidestream vs. Mainstream

Phases of the Time Capnogram

• Phase I: Inspiration
 - No CO₂ detected (hopefully)
• Phase II: Appearance of CO₂ in the system.
 - Mixed alveolar and deadspace gas.
• Phase III: Plateau
 - Constant emptying of alveolar gas.
 - Presence of CO₂ through the end of the breath.
• Phase IV: Washout of CO₂ from subsequent inspiration.

Abnormal Waveforms

Sudden loss of PETCO₂ to zero or near zero indicates immediate danger because no respiration is detected.
• Esophageal intubation
• Complete airway disconnect from ventilator
• Complete ventilator malfunction
• Totally obstructed/kinked endotracheal tube

Abnormal Waveforms

Exponential decrease in PETCO₂ reflects a catastrophic event in the patient’s cardiopulmonary system.
• Sudden Hypotension/massive blood loss
• Circulatory arrest with continued ventilation
• Pulmonary embolism
• Cardiopulmonary Bypass
Abnormal Waveforms

Gradual decrease in PETCO₂ indicates a decreasing CO₂ production, or decreasing systemic or pulmonary perfusion.
- Hypothermia
- Sedation
- Hyperventilation
- Hypovolemia
- Decreasing Cardiac Output

Artifacts with Time-Based Capnograms

- Patient efforts
 - “Curare cleft”
- Cardiac Oscillations

End-Tidal CO₂

Clinical Uses of Capnography

- Weaning
- Hyperventilation monitoring
- Use in Cardiac Arrest
 - Intubation verification
 - Restoration of Spontaneous Circulation
- Easy Cap

Volumetric Capnography

The Normal Volume-Based Capnogram
Checklist for Interpreting a Volume-Based Capnogram

- **Phase I – Deadspace Gas**
 - Rebreathing? (1)
 - Deadspace seem right?
- **Phase II – Transitional Phase**
 - Transition from upper to lower airways.
 - Should be steep. (3)
 - Represents changes in perfusion.
- **Phase III – Alveolar Gas Exchange**
 - Changes in gas distribution.
 - Increased slope = mal-distribution of gas delivery. (5)
 - End of Phase III is the PETCO₂ (6)
 - Area under the curve represents the volume of expired CO₂ (VCO₂).
 - Exhaled volume (8)

The Normal Volume-Based Capnogram

Waveform Phases

- **Phase 1**
 - ↑ depicts an ↑ in airways dead space.
- **Phase 2**
 - ↓ slope depicts reducing perfusion.
- **Phase 3**
 - ↑ slope depicts mal-distribution of gas.

Clinical significance

- ↑ phase 1
 - Phase 1 – relatively short
 - Phase 1 - prolonged
Phase 2 assessment

- If ↓ in phase 2
 - Assure stable minute ventilation
 - Assess PEEP level
 - ↑ intrathoracic pressure may cause ↓ venous return
 - Assess hemodynamic status
 - Is minute ventilation stable?
 - Volume resuscitation or vasopressors may be indicated

↓ Phase 2

- When minute ventilation is stable, indicative of a ↓ in perfusion.

Phase 3 assessment

- If ↑ or absent phase 3 mal-distribution of gas at alveolar level exists
 - Assess for appropriate PEEP level
 - Inadequate PEEP may be present
 - Bronchospasm
 - Bronchodilator tx my be indicated
 - Structure damage at alveolar level may be present
 - Pneumothorax?

↑ Phase 3

- Slope of phase 3 present and level
- Phase 3 absent
Effective Tidal Volume

- The volume of gas between the end of Phase I and the end of Phase III.
- Phase I represents the volume of gas being delivered from the ventilator which doesn’t participate in gas exchange.
 - Monitoring of the effective tidal volume (and $\overline{\text{CO}_2}$) can indicate on a breath-by-breath basis when PaCO₂ changes will be occurring before they actually rise.

Area X = Vol CO₂

Allows determination of VCO₂ in one min. (200 mL/min.)

\dot{V}_CO_2

- \dot{V}_CO_2 represents the volume of CO₂ eliminated.
 - This is usually the same as what is produced.
 - CO₂ balance is dependent on four factors:
 - Production
 - Transportation (cell to blood & blood to lungs)
 - Storage (conversion to CO₂ containing substances in the muscle, fat and bone)
 - Elimination
 - Monitoring \overline{V}_a and \dot{V}_CO_2 allows for evaluation of a successful weaning process.

Waveform Regions

- Z = anatomic V_D; Y = V_D Alveolar
- $\% \text{CO}_2$ in Arterial Blood

Sum of V_{Danat} (Z) and V_{Dalv} (Y) is Physiologic V_D

- Phys V_D / V_I:
 \[\frac{\text{PaCO}_2 - \text{P}_{\text{eCO}_2}}{\text{PaCO}_2} = \frac{Y + Z}{X + Y + Z} \]

- Alveolar Ventilation
- Min. Vol. CO₂ (VCO₂)
Uses of Volumetric Capnography

- Assess work of breathing during weaning trial.

Using V\textsubscript{t}alv and VCO\textsubscript{2} to Recruit Alveoli in a Postoperative CABG Patient Suffering from Hypoxemia

Submitted by
Douglas C. Oberly, MS, RRT
Manager Respiratory Care Department
Hartford Hospital, Hartford, CT

Using V\textsubscript{t}alv and VCO\textsubscript{2} to Recruit Alveoli

- Patient Profile
 - 72 yo male, post-op CABG, MV
- Clinical Challenge
 - Developed a low Sp\textsubscript{O2} within 2 hours of arrival into the ICU
 - F\textsubscript{IO2} and PEEP increased, no acceptable change in Pa\textsubscript{O2} and Sp\textsubscript{O2}
- Clinical Intervention
 - Lung recruitment

Using V\textsubscript{t}alv and VCO\textsubscript{2} to Recruit Alveoli

- Clinical Course
 - PEEP increased by 2 cm H\textsubscript{2}O every 10 minutes
 - Observed V\textsubscript{t}alv, VCO\textsubscript{2} and Sp\textsubscript{O2}
- Monitoring Data
 - Red arrows show PEEP increases
 - No deterioration in VCO\textsubscript{2}, V/Q stable
 - V\textsubscript{t}alv starts to increase at 16 cm H\textsubscript{2}O, alveoli are being recruited
 - Sp\textsubscript{O2} responded at 20 cm H\textsubscript{2}O

Using V\textsubscript{t}alv and VCO\textsubscript{2} to Recruit Alveoli

- Summary
 - V\textsubscript{t}alv is an ideal parameter to show alveolar recruitment
 - VCO\textsubscript{2} indicates V/Q status during the procedure
 - Sp\textsubscript{O2} did not show improvement until best PEEP
 - V\textsubscript{t}alv combined with VCO\textsubscript{2} were best to indicate increased PEEP levels were working
Uses of Volumetric Capnography

- **Optimal PEEP**
 - Overdistension leads to increased V_{danat} and reduced perfusion.
 - Increased V_{danat} can be assessed by an increase in Phase I volume.
 - Reduced perfusion can be assessed by a decrease in Phase II slope combined with a decrease in VCO$_2$.

Increasing PEEP -

- Expanded Airways increase V_{danat} (zone Y)
- Expanded alveoli restrict perfusion so increased V_{dalv} (Zone Z)

VCO$_2$ to Determine Optimal PEEP

- **Patient Profile**
 - 25 yo male, motorcycle accident
 - Head injury, rib fractures
 - Pentobarbital induced coma
- **Clinical Challenge**
 - Developed acute lung injury
 - Low PaO$_2$, SpO$_2$

Clinical Intervention

- Maximize lung recruitment
- Determine optimal PEEP
 - Without adversely affecting intracranial pressures
- **Clinical Course**
 - Monitor VCO$_2$ and VA
 - Increase PEEP in 2 cm H$_2$O increments

Results

- PEEP increased from 14 to 20
- Each step increased VA, VCO$_2$ initially decreased but recovered
- At PEEP of 22, VA did not increase, VCO$_2$ did not recover
- PEEP reduced to 20, VCO$_2$ recovered
VCO₂ to Determine Optimal PEEP

- **Determining Optimal PEEP**
 - **VA**
 - Showed sharp rises after initial PEEP settings
 - A result of alveolar recruitment
 - **VCO₂**
 - Initial decrease after PEEP increase, recovered quickly
 - Confirmed that pulmonary perfusion was not compromised

Improvement in Distribution of Ventilation in Asthma

- **Asthma — Day 1 (dark) Day 5 (blue)**

Which graph represents ARDS?

- Graphs show PEco₂ vs. Volume (hatched line).
- VAE represents the “alveolar ejection volume” (true alveolar gas mixing volume).

Uses of Volumetric Capnography

- **Pulmonary Embolism**
 - 650,000 cases/year in US
 - 50,000 to 200,000 die.
 - Most deaths occur within first hour.
 - Prompt therapy can reduce mortality from 30% to 2.5 to 10%.
 - 70% of deaths from PE identified by autopsy were not identified before death.
- **Methods of PE detection**
 - Evaluation of V̇A/V̇t
 - Paco₂-Peto₂ gradient with maximum exhalation.
 - Late deadspace fraction (Ḟdlate)

Uses of Volumetric Capnography

- **Non-Invasive Cardiac Output**
 - Fick Principle (1870)
 - $Q_c = \frac{V O_2}{CaO_2 - CvO_2}$
 - OR $Q_c = \frac{V CO_2}{CvCO_2 - CaCO_2}$
Partial Rebreathing Method

• If we measure the VCO₂ and arterial CO₂ contents (substituting in end-tidal values for arterial and applying a solubility coefficient conversion), we can determine the cardiac output.

• If we then allow for rebreathing of CO₂ and allow for a change the VCO₂ and arterial (end-tidal) CO₂, we can determine the amount of change in these values.

• The ratio of the change in VCO₂ to that of arterial CO₂ is equivalent to the Cardiac Output.

• The difference in venous CO₂ values is ignored as it is determined by the amount of CO₂ that is returned to the lungs, which is constant.

Calculation involved with NICO

\[
 Q_c = \frac{\dot{V}CO_2}{CvCO_2 - CaCO_2}
\]

\[
 Q_c = \frac{\Delta \dot{V}CO_2}{\Delta PetCO_2}
\]

Other uses for Capnography

• During Apnea Testing in Brain-dead patients.
 • Eur J Anaesthesia Oct 2007, 24(10):868-75

• Evaluating DKA in children.
 • No patients with a PetCO₂ >30 had DKA.
 • J Paeditr Child Health Oct 2007, 43(10):677-680

• V̇e/V̇, ratio and ARDS Mortality
 • Elevated V̇e/V̇ early in the course of ARDS was correlated with increased mortality.
 • Chest Sep 2007, 132(3): 836-842

• PCA Administration
 • “Continuous respiratory monitoring is optimal for the safe administration of PCA, because any RD event can progress to respiratory arrest if undetected.”
 • Anesth Analg Aug 2007, 105(2):412-8