Self Assessment – Module G

- 1) Name three ways CO_2 is transported in the RBC and the % of each.
 - A) **DISSOLVED**
 - B) AS BICARBONATE
 - C) AS CARBAMINO COMPOUNDS
- 2) Since we cannot measure H₂CO₃ directly, what parameter do we use instead to reflect the carbonic acid concentration in the blood? PaCO₂
- You are caring for a patient in PCV A/C mode, Pressure limit 30 cm H₂0, Inspiratory time .8 seconds, f 15/min, Total f 15/min, FIO2 .60, PEEP + 5 cm H₂0. The pH is 7.49; PaCO₂ is 28; HCO₃ 22; PaO₂ 83 torr. You would:
 - A) Increase the f
 - B) Increase the Vt
 - C) Increase the FiO₂
 - D) Increase the pressure limit
 - E) Decrease the f
- 4) The effect of O_2 on the CO_2 dissociation curve is the **HALDANE** effect.
- 5) HCO₃ moves out of the RBC in exchange for Cl⁻ anions at the A) Tissue level
 A) Lung level
 - B) Lung level
- 6) If the plasma PaCO₂ is 50 mm Hg, calculate the PaCO₂ in mEq/L
 50 mm Hg x .03 mEq/l/mm Hg = 1.5 mEq/L
- 7) Name three causes for an increased PaCO₂.
 - A) INCREASED CO₂ PRODUCTION
 - **B) HYPOVENTILATION**
 - C) INCREASED DEADSPACE
- 8) CO₂ combined to hemoglobin in the RBC is called **CARBAMINO-HB**.
- 9) CO₂ combined to protein in the plasma is referred to as a CARBAMINO COMPOUNDS.
- 10) The movement of HCO3 out of the RBC in exchange for CI anions at the tissue level is called the **HAMBURGER (CHLORIDE SHIFT)** effect.

- 11)Given a pH of 7.37, PaCO₂ 60 mm Hg, HCO3 36 mEq/L, PaO₂ 80 torr, FiO₂ .40, on volume ventilation A/C mode at Vt of 700 mL, f 12/min, Peak flow 70 L/min. What ventilator changes should be made?
 - A) Increase the Vt
 - B) Increase the f
 - C) Maintain current settings
 - D) Add PEEP
 - E) Increase the pressure limit

12) What % of CO_2 is carried as dissolved in the plasma? 5%

- 13) Given the following ABG, calculate the total CO₂: pH 7.20, PaCO₂ 66 torr, HCO₃ 37 mEq/L, PaO₂ 55 torr, FIO₂ .50.
 - A) 35 mEq/L
 B) 24 mEq/L
 C) 45 mEq/L
 D) 39 mEq/L HCO₃ + PaCO₂ = 37 + (66 x .03) = 37 + 1.98 = 39 mEq/L
 E) 29 mEq/L
- 14) What is the normal Total CO₂ content? 25 mEq/L
- 15) The majority of CO_2 in the blood is carried as:
 - A) Dissolved
 - B) Combined with Hb
 - C) Plasma Proteins
 - <mark>D) HCO</mark>₃
 - E) Water
- 16) The average amount of CO₂ produced each minute from the tissue cells is normally **200 mL/min**.

17)Which of the following equations best reflects the PaCO₂ level in the arterial blood?

- A) Minute Ventilation (VE)
- B) Alveolar Minute Ventilation (VA)
- C) VD/Vt ratio
- D) CaO₂

- 18) You are caring for a patient on mechanical ventilation and have just received the ABG results. Based on these results, what recommendation would you make?
 pH 7.20 PaCO₂ 69 mm Hg, PaO₂ 80 mm Hg, FiO₂ .40, Vt 400 mL
 Plateau pressure 18 cm H20, Set f 12/min, total f 20/min, mode A/C- VC
 - A) Decrease the Vt
 - B) Decrease the f
 - C) Increase the Vt
 - A) Increase the FiO_2
 - B) Increase the peak flowrate
- 19) You are called to the bedside of a patient C/O dyspnea, chest pain and exhibiting tachypnea. The patient's VE is 16 L/min. You do an ABG and the results are pH 7.38, PaCO₂ 43 torr, HCO₃ 25 mEq/L, PaO₂ 77 mm Hg, FiO₂ NC at 5 L/min. What is your evaluation of the clinical situation? SINCE A PaCO₂ OF ABOUT 25 torr SHOULD BE ACHIEVED WITH A MINUTE VOLUME OF 16 L/min, THERE IS AN INCREASED DEADSPACE PRESENT. WE NEED TO EVALUATE THE CAUSE.
- 20)Given the following information: pH 7.38, PaCO₂ 42 mm Hg, HCO₃ 24, PaO₂ 98 mmHg, VA 10 L/min. What would explain the high VA? **INCREASED V**_d
- 21)Explain the effect of an increased PaCO₂ on the following
 - A) pH **DECREASES**
 - B) PAO₂ DECREASES
 - C) VA BAD QUESTION. THE PaCO₂ IS A <u>RESULT OF</u> THE ALVEOLAR MINUTE VOLUME.

Given the following ABG results, determine if the PaCO₂ should be corrected and if so, by how much.

22)pH 7.10, PaCO₂ 100 mm Hg, HCO₃ 38 mEq/L

- A) Would you correct the PaCO₂ YES
- B) How much would you correct the PaCO₂ 63 torr
- 23)pH 7.58, PaCO₂ 18 mm Hg, HCO₃ 15 mEq/L
 - A) Would you correct the PaCO₂ YES
 - B) How much would you correct the PaCO₂ 25 torr
- 24)pH 7.38, PaCO₂ 50, HCO₃ 30 mEq/L
 - A) Would you correct the PaCO₂NO
 - B) Is this acute or chronic? CHRONIC

22)Given an A-a gradient of 250 mm Hg, calculate the approximate % shunt 5% + (5% x 2.5) = 5% + 12.5 = 17.5%