

Plasma Bicarbonate and Buffering for Respiratory Acidosis • Hydrolysis Effect: Some rise in HCO₃- will

- occur because of excess $PaCO_2$ in the system.
 - A 10 mmHg ↑ in Paco₂ will yield a 1 mEq/L ↑ in plasma [HCO₃⁻].
 - A 5 mmHg \downarrow in Paco₂ will yield a 1 mEq/L \downarrow in plasma [HCO₃-].

Carbonic Acid Production/Excretion

- Carbonic Acid is produced at the tissue level by the combination of carbon dioxide and water (left half).
 - Hydrogen ion concentration increases and pH falls.
- Carbonic Acid is released at the lungs.
 Hydrogen ion concentration reduces and pH rises.

CO₂ Transport in the RBC

- 5% of CO₂ dissolves in the intracellular fluid
- 21% of $\rm CO_2$ combines with Hb to from carbamino Hb
- 63% of CO_2 reacts with H_2O to from H_2CO_3
 - H₂CO₃ is a volatile acid.
 - This reaction is accelerated by an enzyme carbonic anhydrase.

- Phenomenon (named for Hartog Jakob Hamburger; discovered in 1892).
- Bicarbonate is then transported in the plasma.

CARBON DIOXIDE TRANSPORT MECHANISMS		APPROX. % OF TOTAL CO ₂ TRANSPORTED TO THE LUNGS		APPROX. QUANTITY OF TOTAL CO ₂ TRANSPORTED TO THE LUNGS
IN PLASMA				
Carbamino Compound		1%		2 ml/min
Bicarbonate		5%		10 ml/min
Dissolved CO ₂		5%		10 ml/min
IN RED BLOOD CELLS				
Dissolved CO ₂		5%		10 ml/min
Carbamino-Hb		21%		42 ml/min
Bicarbonate		63%		126 ml/min
	Total	100%	Total	200 ml/min

The Kidneys and Acid-Base Balance

- 2 major functions in acid-base homeostasis:
 - Fixed Acid Excretion
 - Normal Regulation of Bicarbonate in the blood.

Fixed Acids

- Fixed acids are produced through normal body metabolism (50 to 60 mEq/day).
- They cannot be converted to a gas and excreted through the lungs; they must be excreted in the urine by the kidney.
- Several conditions can result in an abnormal increase in fixed acid production (2,000 mEq/day).
- It is the kidney's role to excrete these acids and maintain homeostasis.

Metabolism and Fixed Acids				
	SUBSTANCE	FIXED ACIDS		
	Protein catabolism	Sulfuric Acid (H_2SO_4) Phosphoric Acid (H_3PO_4)		
	Incomplete lipid metabolism	Ketoacids: Acetoacetic acid and Beta- Hydroxybutyric acid		
	Carbohydrate metabolism (anaerobic)	Lactic acid		

Buffer Solution

đ

- Solution where the pH tends to be stable.
- When an acid or base is added to a buffer solution, the pH changes, but not as significantly as if the buffered solution was not present.
- Buffer solutions accomplish this by converting strong acids to weak acids (and strong bases to weak bases).
- Buffer solutions are composed of a weak acid and the salt of its conjugate base.

- Weak acid: Carbonic acid (H₂CO₃)
- Conjugate base of carbonic acid is the bicarbonate ion (HCO₃⁻).
- The salt of the conjugate base (bicarbonate ion) is NaHCO₃.
- When a strong acid is added to the buffer solution, the strong acid is converted to a weak acid and a salt.
- HCl + NaHCO₃ → NaCl + H₂CO₃

Organic Phosphates

Given a fixed alveolar ventilation of 4 L/min, calculate the $PaCO_2$ when the CO_2 production is 300 mL/min.

Given a V_t of 400 mL, physiologic V_d of 200 mL and a f of 16/min, calculate the alveolar minute ventilation (\dot{V}_A) . You are ventilating a patient in A/C mode with a V_t of 600 mL, f 12/min, FIo₂ 50%, Peak flowrate 60 L/min. The Paco₂ is 60 mm Hg, HCO₃⁻ 35, pH 7.39, Pao₂ 88 mm Hg. What ventilator change would you recommend?

A. Increase the Vt to 800 mL
B. Increase the f to 16/min
C. Decrease the f to 8/min
D. Increase the FIO2 to 60%
E. Maintain current settings

A patient with respiratory acidosis on mechanical ventilatory support is 6'2" and weighs 190 lbs. The Exhaled V_t is 400 mL, and the f is 10/min. The patient is on controlled volume ventilation. The Paco₂ is 60 mm Hg, pH 7.33. The patient's desired Paco₂ is 40 mm Hg. What ventilator change must be made to decrease the Paco₂? The doctor asks you to increase the V_t to correct the Paco₂ to 40 mm Hg.

A woman who is 5'2" is on controlled ventilation. She has a $PaCO_2$ of 58 mm Hg; pH is 7.28, V_t 625 mL, and a f of 7/min. Plateau pressure is measured as 30 cm H₂O. How can a desired $PaCO_2$ of 40 mm Hg be achieved? (IBW is 52 kg)

A patient has a pH of 7.66, PaCO₂ 20 mm Hg, HCO₃⁻ 22 mEq/L, PaO₂ 89 mm Hg on FIO₂ of 40% is being ventilated in the control mode with no spontaneous breaths and a V_t of 700 mL, f of 18/min. The doctor asks you to correct the pH and PaCO₂. You are ventilating a patient on the Servo with a minute ventilation of 12 L/min. ABGs show $PaCO_2$ 24, HCO_3^- 18, pH 7.50. How would you change the ventilator (change only the $PaCO_2$) to restore a normal pH? You are called to the Emergency Department to care for a closed head injured patient who is being intubated. He is placed on mechanical ventilation with the following settings:
 V_t: 600 mL, Mode: A/C, f: 12/min, Flo₂: .60, PEEP: 5 cm H₂O.

An arterial blood gas shows the following results: pH: 7.38, Paco₂: 42 torr, Pao₂: 80 torr, and HCO₃: 24 mEq/L. ICP is elevated and the physician wishes to hyperventilate the patient to a Paco₂ of 30 torr to decrease the ICP. What changes would you make to accomplish this goal? You are ventilating a patient on the Servo ventilator with a minute ventilation of 10 L/min. The pH is 7.26, PacO₂ 70 mm Hg, HCO₃⁻ 30 mEq/L, PaO₂ 62 mm Hg. The doctor asks you to correct the pH. What is the desired level of PacO₂? How would you change the ventilator settings to correct to the new PacO₂ level?